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3.1 Introduction 
 

Modeling how we choose among alternatives, or more generally, modeling 
preferences, is one of the core topics of study in Psychology. Preferences can 
be studied experimentally using a variety of procedures, one of the oldest 
being the method of paired comparisons. This method remains quite popular 
in areas such as psychophysics and consumer psychology. For a good 
overview of the method of paired comparisons see David (1988).  

The most common paired comparisons procedure is what Bock and Jones 
(1968) called multiple judgment paired comparisons. Suppose preferences 
for n stimuli are to be investigated. In this procedure we collect a random 
sample of individuals from the population we wish to investigate, we 
construct all possible paired comparisons, and all individuals in the sample 
are presented all pairs one at a time. For each pair, each individual is asked 
to choose one stimuli within each pair and his or her response is coded using 

a binary variable. Since there are ( 1)
2 2
n n nn
  −

= = 
 

�  paired comparisons 

with n objects, for each individual we obtain a pattern of ñ binary 
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observations. The objective is then to model the set of possible 2n�  paired 
comparison patterns. Some of the these patterns may be intransitive, while 
others are transitive. A pattern of paired comparisons is said to be transitive 
when given the pattern it is possible to order the individual preferences, and 
intransitive otherwise. For example, consider three stimuli, {i, j, k}, and 
suppose an individual chooses i over j, i over k, and j over k. This pattern of 
binary choices is transitive as the stimulus most preferred by this individual 
is i, the second most preferred stimulus is j, and the least preferred stimulus 
is k. Suppose, on the other hand, that the individual chooses i over j, i over k, 
and k over j. This pattern is intransitive as we can not order the preferences 
of this individual for these stimuli given these binary choices. Since the total 
number of orderings of n stimuli is n!, this is number of possible transitive 
patterns in a multiple judgment paired comparisons experiment. The number 
of possible intransitive paired comparisons patterns is obviously 2 !n n−� . 

An alternative method to study preferences is the ranking method, which 
is also quite popular in applications. In this method, all stimuli are presented 
at once to the respondents, and the respondents are asked to rank or to order 
the stimuli according to their preferences. The multiple judgment paired 
comparisons method and the ranking method are closely related. This is 
because we can transform the observed rankings to patterns of paired 
comparisons. However, since the paired comparisons patterns arising from a 
ranking experiment must be transitive, only n! paired comparisons patterns 
can be observed.  

One of the oldest models for paired comparisons data is Thurstone’s 
(1927) law of comparative judgment. Arguably it remains the most 
influential model to date along with Luce's (1959) choice model (see 
Böckenholt, 2001). In a nutshell, Thurstone assumed that whenever two 
stimuli are presented to an individual, each stimulus elicits an unobserved 
continuous preference (discriminal process in Thurstone's terminology) 
which is normally distributed, and that the individual chooses the stimuli 
with the largest continuous preference. To model ranking data, Thurstone 
(1931) proposed transforming the observed ranking patterns to patterns of 
binary paired comparisons and fitting his paired comparisons model 
(Thurstone, 1927) to the transformed data. In his 1927 seminal article, 
Thurstone described in detail a variety of special cases and restricted 
versions of his model. Perhaps the most popular restricted version of 
Thurstone's model is his Case V model. In this model, Thurstone assumed 
that the continuous preferences were uncorrelated and had common 
variance. In recent years, more complex restricted Thurstonian models have 
been proposed. For a good overview of restricted Thurstonian models, see 
Takane (1987).  
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It turns out that Thurstone's model (and in particular, Thurstone's Case V 
model) is not a proper model for multiple judgment paired comparisons data 
(Maydeu-Olivares, 1999). This is because under Thurstone's model 
intransitive patterns have zero probability. In other words, according to 
Thurstone's model all respondents must be transitive. This is obviously an 
implausible assumption for multiple judgment data. Thurstone's model, on 
the other hand is a plausible model for paired comparisons obtained via a 
ranking experiment, as in this case the respondents are forced to be transitive 
by the use of the ranking method. It was not until 1987 that Takane proposed 
an extension of Thurstone's model for paired comparisons that accounts for 
the intransitive patterns that may be observed in a multiple judgment paired 
comparisons experiment. In this paper we shall refer to Takane's (1987) 
extension of Thurstone's (1927) model as the Thurstone-Takane model.  

Despite their theoretical appeal, estimating Thurstonian models for 
multiple judgment paired comparisons and ranking data is in principle 
involved as to compute a pattern probability under these models it is 
necessary to integrate a high dimensional normal density. Because it is 
difficult to evaluate these integrals, theoretical research on Thurstonian 
modeling of multiple judgment paired comparisons and of ranking data has 
stagnated for years. Also, by and large applied researchers seem to continue 
using the simplest and most restrictive versions of Thurstone's model (such 
as his Case V) as well as the simplest estimation approaches to these models, 
such as the classical approach described in Torgerson (1958). Recently, with 
the development of new statistical methods for handling multivariate normal 
integrals and the advent of fast computers we see a renewed interest in these 
models and in these data (Böckenholt, 1990, 1993; Brady, 1989; Chan & 
Bentler, 1998; Maydeu-Olivares, 1999, 2001; Tsai & Böckenholt, 2001; Tsai 
& Yao, 2000; Yao & Böckenholt, 1999; Yu, 2000).  

In this paper we show that estimating Thurstone's Case V model (suitable 
for ranking data) and estimating the Thurstone-Takane Case V model 
(suitable for multiple judgment paired comparisons data) is similar to the 
problem of estimating a factor model from binary data. This model assumes 
that a multivariate normal density with a factor structure has been 
dichotomized according to a set of thresholds. Thus, to compute a pattern 
probability under this model it is also necessary to integrate a high 
dimensional normal density. However, the factor model for binary data can 
be straightforwardly estimated using software for structural equation 
modeling with capabilities for handling binary data such as MPLUS 
(Muthén & Muthén, 1998) without integrating high dimensional normal 
densities. Rather, within a structural equations framework the factor model is 
estimated as follows: First, the thresholds and tetrachoric correlations are 
estimated. Then, if no restrictions are imposed on the thresholds, the factor 
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loadings are estimated from the tetrachoric correlations. Alternatively, if 
some structure is assumed on the thresholds, then the model parameters are 
estimated in the second stage from the thresholds and tetrachoric 
correlations. The purpose of this paper is to show that this structural 
equations approach can also be applied to estimate Thurstonian Case V 
models to ranking and to paired comparisons data. In fact, these models can 
be as straightforwardly estimated as a factor model for binary data. Thus, 
applied researchers can use widely available structural equations modeling 
software to draw sound statistical inferences from paired comparisons and 
ranking data. 

The remaining of this article is structured in three sections. In the next 
section Thurstone's Case V model and the Thurstone-Takane model are 
presented and we provide the restrictions imposed by these models on the 
thresholds and tetrachoric correlations. In the third section we provide the 
relationship between these models and the factor model for binary data. In 
this section we also describe how to estimate Thurstone's Case V model for 
ranking data and the Thurstone-Takane model for paired comparisons data 
using MPLUS. Two examples are provided. In the first example we model 
purchasing preferences for compact cars collected using paired comparisons. 
In the second example we model career preferences among Psychology 
undergraduates collected using rankings.  

An added benefit of employing an structural equations approach to model 
paired comparisons and ranking data is that one can incorporate to the model 
background information on the respondents. This is the topic of the fourth 
section of the manuscript. In this section we re-estimate the compact cars' 
paired comparisons data using MPLUS including in the model the gender, 
age, and family income of the respondents.  

As an appendix we describe the classical estimation procedure for 
Thurstone's Case V model (Mosteller, 1951a; Torgerson, 1958) that may be 
familiar to some readers, we discuss its limitations, and we relate it to the 
structural equations approach employed here.  

 
 

3.2 Thurstone’s Case V model 
  

In this section, we start by presenting Thurstone's Case V model for one 
paired comparison as is generally presented in the literature.  

 
3.2.1 Case V model Thurstone's for one paired comparison 
 
Suppose we wish to investigate how the members of a population choose 
between two stimuli, i and j. We collect a random sample of N individuals 
from that population and we present each individual both stimuli asking him 
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or her to choose one stimuli. The individuals' responses are then coded as 
follows:  

 ,

1 if stimulus  is chosen
0 if stimulus  is choseni j

i
y

j


= 


   (1) 

Thus, we obtain a binary variable and we wish to model ,Pr( 1)i jy =  
and ,Pr( 0)i jy = . To model these probabilities, Thurstone’s (1927) law of 
comparative judgment introduces the following assumptions:  

 
(a) Each respondent has a continuous preference ti for stimulus i and a 

continuous preference tj for stimulus j.   
(b) Both continuous preferences ti and tj are normally distributed in the 

population. 
(c) A respondent will choose stimulus i if his/her continuous preference 

for this stimulus is greater that his/her continuous preference for 
stimulus j, otherwise s/he will choose stimulus j.  

 
Thurstone's Case V is a special case of this general model in which it is 

further assumed that 
 
(d) The continuous preferences ti and tj are uncorrelated in the 

population and they have a common variance 2σ .  
 

Thustone's Case V model implies that  

 , 2
Pr( 1)

2
i j

i jy
µ −µ 

= = Φ 
σ 

 (2) 

where ( )Φ •  denotes a univariate standard normal distribution function, and 
iµ  and jµ  denote the mean of the continuous preferences for stimuli i and j 

in the population of interest. Obviously, , ,Pr( 0) 1 Pr( 1)i j i jy y= = − = . 
We shall now present how one reaches (2) from assumptions (a) to (d) to 

better understand the case in which more than one paired comparison is 
modeled. To do so, we write ( , )i jt t ′=t . Then, from assumptions (b) and (d) 

( )2,N σt µ I∼  (3) 

Now, following Thurstone (1927) we take the difference between the 
unobserved preferences  
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*
,i j i jy t t= − . (4) 

Then, assumption (c) implies that 

*
,

, *
,

1 if 0
0 if 0

i j
i j

i j

y
y

y
 ≥=  <

 (5) 

Finally, equations (3), (4) and (5) imply that under Thurstone’s Case V model 

* 2 *
, 1 , ,

0

Pr( 1) ( : ,2 )i j i j i j i jy y dy
∞

= = φ µ −µ σ∫ , (6) 

and 
0

* 2 *
, 1 , ,Pr( 0) ( : ,2 )i j i j i j i jy y dy

−∞

= = φ µ −µ σ∫ , where ( )nφ •  denotes a n-

variate normal density function. 
Equation (2) is obtained from (6) by standardizing *

,i jy . This leaves the 
probabilities  unchanged. Let  

*
,

*
,

*
,*

,
i j

i j

i j y
i j

y

y
z

−µ
=

σ
, (7) 

where *
,i jy

µ and *
,i jy

σ denote the mean and standard deviation of *
,i jy . Then, 

when *
, 0i jy = , *

,i jz  takes the value  

*
,

*
,

,2

0 ( )

2
i j

i j

y i j
i j

y

−µ − µ −µ
= = τ

σ σ
,  (8) 

which we denote by ,i jτ . Also, the mean and variance of *
,i jz are 0 and 1, 

respectively. Equation (2) then follows immediately: 

,

* *
, 1 , , , 2

Pr( 1) ( : 0,1) ( )
2i j

i j
i j i j i j i jy z dz

∞

τ

µ −µ 
= = φ = Φ −τ = Φ 

σ 
∫ . (9) 

We now turn to the case where we are interested in modeling preferences 
for n > 2 stimuli using a paired comparisons design. In this case we are to 
model the probability of observing a pattern of paired comparisons. This 
probability is obtained by integrating a multivariate normal density. We shall 
see what restrictions Thurstone's Case V model imposes on the thresholds 
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and tetrachoric correlations of a multivariate normal density. Later on, we 
shall see that these restrictions are very similar to those imposed by a factor 
model. This similarity makes straightforward to estimate Thurstone's Case V 
model within a structural equations approach. 

 
3.2.2 Thurstone’s Case V model for multiple paired comparisons 

 
When preferences for n stimuli are to be modeled there are ñ paired 

comparisons. To investigate preferences for these stimuli in a population 
most often we collect a random sample of respondents and we present each 
respondent all pairs, one pair at a time, asking the respondents to choose one 
stimulus within each pair. To avoid order effects, the experimenter must 
randomize the order of presentation of the pairs, as well as the order of 
stimuli within each pair. The paired comparisons obtained by this procedure 
have been termed multiple judgement paired comparisons by Bock and 
Jones (1968).  

Now, using (1), for each respondent we obtain a pattern of ñ binary 
observations. The objective now is to model the probability of observing 
each of the possible 2n� binary patterns. To express the pattern probabilities 
under Thurstone's Case V model it is convenient to use matrix notation.  

We write (4) in matrix notation as 

*y = At  (10) 

where t is a 1n× vector given by (3), y* is a 1n×�  vector, and A is a n n×�  
design matrix where each column corresponds to one of the stimuli, and 
each row to one of the paired comparisons. When n = 2, (1 1)= −A , 
whereas when n = 3 and n = 4,   

1 1 0
1 0 1
0 1 1

− 
 = − 
 − 

A ,        

1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

− 
 − 
 −

=  − 
 −
 

−  

A , (11) 

respectively. Thus, the first row of A correspond to the comparison between 
stimulus one and two, the second row between stimulus one and three, and 
so forth.  
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The probability of observing any pattern of paired comparisons under 
Thurstone's Case V model is obtained by putting together (3), (10) and (5). 
This probability is 

( )* *
* *

,
,

Pr : ,i j n y y
i j

y d
 

= φ 
 

∫ ∫R
y µ Σ y�"∩  (12) 

where the limits of integration are (0, )∞ if , 1i jy =  and ( ,0)−∞  if , 0i jy = . 
The mean vector and covariance matrix of y* are readily obtained from (10) 
and (3) 

*y
=µ Aµ             *

2
y

′= σΣ AA . (13) 

We shall provide an example to better understand Equation (12). Suppose 
that we are interested in modeling three stimuli, {i, j, k}. Then all possible 
paired comparisons are {i, j}, {i, k} and {j, k}. The probability that an 
individual prefers i over j, i over k, but k over j is under Thurstone's Case V 
model, 

( ) ( ) ( ) ( )* *

0
* *

, , , 3
0 0

Pr 1 1 0 : ,i j i k j k y y
y y y d

∞ ∞

−∞

 = ∩ = ∩ = = φ  ∫ ∫ ∫ y µ Σ y  (14) 

where by (13), 

*

i j

i ky

j k

 µ −µ
 

= µ −µ 
 µ −µ 

µ ,           *

2

2 2

2 2 2

2
2

2
y

 σ
 

= σ σ 
 σ σ σ −

Σ . (15) 

As it can be seen in this last equation, the binary choice probabilities 
,Pr( 1)i jy = , ,Pr( 1)i ky =  and ,Pr( 1)j ky =  are not independent under 

Thurstone’s Case V model. This is important, as classical estimation 
procedures for Thurstonian models -see Appendix- assume that binary 
choice probabilities are independent. 

When there were only two stimuli we standardized y* using (7) 
transforming (6) to obtain (2). We shall now standardize y* when n > 2. In 
matrix notation, (7) can be written as  

( )*
* *

y
= −z D y µ ,            ( )( )*

1
2Diag

y

−

=D Σ . (16) 
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That is, ( )( )

1
2 2Diag

−
′= σD AA . As a result *y

=µ 0  and 

( )* *
2 1

2z y
′ ′= = σ =Ρ DΣ D D AA D AA . (17) 

After standardization, the pattern probabilities (12) can be equivalently 
written as 

( )*
* *

,
,

Pr : ,i j n z
i j

y d
 

= φ 
 

∫ ∫R
z 0 Ρ z� �"∩  (18) 

where the limits of integration are now ,( , )i jτ ∞  if , 1i jy =  and ,( , )i j−∞ τ  if 
, 0i jy = . The thresholds ,i jτ  were defined in (8). If we stack all thresholds in 

a vector, the restrictions imposed by Thurstone's Case V model on the 
thresholds can be written as 

*y
= − = −τ Dµ DAµ . (19) 

Also we notice that since z* is a multivariate normal density and (17) has 
ones along its diagonal, the elements of this matrix are tetrachoric 
correlations. Following our previous example, the restrictions imposed by 
Thurstone's Case V model on the thresholds (19) and tetrachoric correlations 
(17) for three stimuli are 

2

2

2

2

2

2

i j

i k

j k

 −µ + µ
 

σ 
 −µ + µ =
 σ
 −µ + µ 
 σ 

τ     *
1

2

1 1
2 2

1
1

1
z

 
 =  
 − 

P . (20) 

It is interesting to notice that under Thurstone's Case V model the 
tetrachoric correlations are patterned, but that they do not depend on any 
model parameters.  

Yet, Thurstone's model for paired comparisons data assigns zero 
probability to all intransitive patterns (Maydeu-Olivares, 1999). Thus, 
Thurstone's model is not a proper model for multiple judgment paired 
comparisons data and should not be used to model these kind of data. On the 
other hand, precisely because it assigns zero probabilities to all intransitive 
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patterns it is a proper model for paired comparisons obtained from ranking 
data. We now discuss the application of Thurstone's Case V model to 
ranking data. 

 
3.2.3 Thurstone’s Case V model for ranking data 

 
In a ranking experiment, all n stimuli are presented to the respondents at 
once. The respondents are asked to rank the stimuli according to their 
preferences. Thurstone (1931) proposed a model for ranking data that simply 
consists in transforming the observed rankings to paired comparisons and 
applying his model for paired comparisons. The rankings are transformed to 
paired comparisons by constructing a dichotomous variable y

i,j
 for each 

ordered pairwise combination of stimuli to indicate which stimulus was 
ranked above the other 

,

1 if   stimulus    is ranked above stimulus   
0 if   stimulus    is ranked below stimulus  i j

i j
y

i j


= 


. (21) 

Then, after transforming the observed rankings to binary data using (21) the 
probability of observing any of the n! possible ranking patterns under 
Thurstone's Case V model is given by (18) with (19) and (17). Thurstone's 
original Case V model is a proper model for rankings as it assigns zero 
probabilities to all intransitive paired comparisons patterns. Intransitive 
patterns can not be observed because in a ranking experiment respondents 
are "forced" to be transitive. 

The fact that when the binary patterns are obtained from ranking patterns 
only n! patterns can be observed instead of 2n�  introduces   

1

2 2

n

x

x
r

−

=

 
=  

 
∑  (22) 

redundancies among the thresholds and tetrachoric correlations estimated 
from the binary variables (Maydeu-Olivares, 1999). For this reason, the 
number of degrees of freedom when estimating a Thurstonian model from 
ranking data does not equal the number of thresholds plus the number of 
tetrachoric correlations minus the number of estimated parameters, i.e. 

( 1) / 2c n n n q= + − −� � � . Rather the correct number of degrees of freedom is  
df = c - r. For convenience, we list r as a function of n in a table for n 
between 3 and 10.  
 

n 3 4 5 6 7 8 9 10 
r 1 4 10 20 35 56 84 120 
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We now present an extension of Thurstone's model due to Takane (1987) 

aimed at accounting for the intransitivities that may be observed in multiple 
judgment paired comparisons experiments.  

 
3.2.4 Thurstone-Takane model for multiple judgement paired 

comparisons data 
 

In the Thurstone-Takane model, an error is added to each paired comparison 
reflecting that a respondent's preference for a stimulus can change during the 
paired comparisons experiment as the stimulus is presented next to different 
stimuli, thus inducing the intransitivities. In other words, while in 
Thurstone's original model (10) is assumed, in the Thurstone-Takane model 
it is assumed instead that 

*y = At + e . (23) 

Furthermore, in the Thurstone-Takane model it is assumed that the paired 
specific errors e are normally distributed with zero means and common 
variance 2ω , and that they are mutually uncorrelated and uncorrelated with 
the preferences t. In other words, while in Thurstone's original Case V model 
(3) is assumed, in the Thurstone-Takane Case V model it is assumed instead 
that 

2

2
,tN

  σ   
∼       ω      

t µ I 0
e 0 0 I

.  (24) 

Now, putting together (23), (24), and (5) the probability of any given 
paired comparisons pattern under the Thurstone-Takane Case V model is 
given by (12), where instead of (13), the mean vector and covariance matrix 
of y* are *y

=µ Aµ , and *
2 2

y
′= σ + ωΣ AA I , respectively. Also, as we did 

with Thurstone's original Case V model, we can apply the standardization 
(16) to the Thurstone-Takane Case V model so as to express the pattern 
probabilities under this model using (18) where now the restrictions imposed 
on the thresholds and tetrachoric correlations are 

= −τ DAµ  (25) 

( )*
2 2

z
′= σ + ωΡ D AA I D  (26) 
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with ( )( )

1
2 2 2Diag

−
′= σ + ωD AA I . Under this model, all paired comparisons 

patterns have non-zero probability and thus it is a suitable model for multiple 
judgment paired comparisons data. 

To sum up, we have described two models, Thurstone's Case V model 
and the Thurstone-Takane Case V model, and we have provided the 
restrictions that these models impose on the thresholds and tetrachoric 
correlations. The former is suitable for modeling ranking data, whereas the 
latter is suitable for modeling multiple judgment paired comparisons data. In 
the next section we describe how these models can be estimated within a 
structural equations framework and we provide two numerical examples.  

 
 

3.3 Structural Equation Modeling Of Thurstone's Case V Model 
 

There is a close correspondence between the models discussed here and the 
factor model for binary data. In fact, estimating these models within a 
structural equations framework is as straightforward as estimating a factor 
model for binary data. Before we present the relationships between these 
models and the factor model it is convenient to provide identification 
restrictions for the models under consideration.  

 
3.3.1 Identification restrictions for Thurstonian Case V models for paired 
comparisons and ranking data 

 
Thurstone's Case V model imposes the restrictions (19) on the thresholds of 
the binary variables, and it imposes the restrictions (17) on the tetrachoric 
correlations. Not all parameters of the model are identified. Because of the 
comparative nature of the data, one of the means must be fixed to set the 
scale for the remaining means. To identify the model we shall set 0nµ = . 
Also, in this model 2σ is not identified. It is convenient to set 2 1

2σ =  as 
when 2σ  is fixed at this value (19) and (17) become 

τ = − µA  *

1
2z

′=Ρ AA  (27) 

Similarly, the Thurstone-Takane Case V model imposes the restrictions 
(25) on the thresholds of the binary variables, and it imposes the restrictions 
(26) on the tetrachoric correlations. Not all parameters of this model are 
identified, either. Again, one of the means must be fixed to set the scale for 
the remaining means. To identify the model we shall set 0nµ = . Also, the 
variance of the paired specific errors is not identified. Hence we shall set 

2 1ω = .  
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However, the Thurstone-Takane Case V model imposes non-linear 
restrictions on the thresholds and tetrachoric correlations through the model-
based diagonal matrix D. These type of non-linear restrictions are not 
straightforward to implement in standard structural equations software. 
Fortunately, it is possible to obtain an equivalent model that does not involve 
D by a one-to-one reparamaterization of the Thurstone-Takane Case V 
model.  Instead of using the set of identified parameters =θ { }2

1 1, , ,n−µ ⋅ ⋅ ⋅ µ σ  
we shall use the set of identified parameters =θ� { }2

1 1, , ,n−µ ⋅ ⋅ ⋅ µ σ� � �  where  

 
21 2

i
i

µ
µ =

+ σ
�  

2
2

21 2
σ

σ =
+ σ

� . (28) 

Applying this reparameterization to (25) and (26) we can write these 
equations as  

= −τ Aµ�  *
2

z
′= σ +Ρ AA U�  (29) 

where  

( ) ( )2 2Diag 1 2′= − σ = − σU I AA I� � .  (30) 

This equivalent version of the Thurstone-Takane Case V model is 
straightforward to implement in standard computer programs for structural 
equation modeling. 
 
3.3.2 Relationship between Thurstonian Case V models for paired 
comparisons and ranking data and the factor model for binary data 

 
Suppose ñ binary indicators are to be modeled using a p-factor model and 

the observed data is treated as categorical. Under this model (also known as 
multidimensional normal ogive model in the educational testing literature), 
the probability of observing a pattern of binary variables is also given by 
(18). In this model, the thresholds τ are left unconstrained and the following 
structure is assumed on the matrix of tetrachoric correlations, 

*z
′=P ΛΨΛ +Θ  , where Λ is a ñ × p matrix of factor loadings, Ψ is a p × p 

matrix of interfactor correlations, and Θ is a ñ x ñ diagonal matrix consisting 
of the variances of the unique factors where for identification purposes, 

( )Diag ′= −Θ I ΛΨΛ .  
We immediately see some similarities between a factor model for ñ 

binary variables and the Thurstonian models we are discussing. The 
similarities increase when we consider a factor model for binary data in 
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which the factor means α are free parameters to be estimated. Letting again 

( )Diag ′= −Θ ΛΨΛI , the thresholds and tetrachoric correlations implied by 
a factor model with non-zero factor means are 

= −τ Λα  *z
′= +Ρ ΛΨΛ Θ . (31) 

Comparing this equation to (27) we see that Thurstone's Case V model 
for n paired comparisons is equivalent to a factor model for ñ binary 
indicators with non-zero factor means if 

 
(a) The number of factors is always n. 
(b) The matrix of factor loadings equal the matrix of constants A. 
(c) The factors are uncorrelated. 
(d) The factors have common variance ½. 
(e) There are no unique factors, so that Θ = 0. 
 

Also, comparing (31) to (29) we see that the Thurstone-Takane Case V 
model is even more similar to a factor model with non-zero factor means. In 
fact, a Thurstone-Takane Case V model is equivalent to a factor model for ñ 
binary indicators with non-zero factor means if 

 
(a) The number of factors is always n. 
(b) The factor loadings equal the matrix of constants A. 
(c) The factors are uncorrelated. 
(d) The factors have common variance 2σ . 

 
3.3.3 Estimation of Thurstonian Case V models using MPLUS 

 
To estimate these models in MPLUS, the observed binary variables are to be 
declared categorical. Also, we must let MPLUS know that we want to 
estimate a model with a mean/threshold structure. Estimation then proceed 
as follows. First, the thresholds and tetrachoric correlations are estimated. 
Then, collecting all the estimated thresholds and tetrachoric correlations in a 
vector κ, and collecting all the q model parameters in a vector θ, the model 
parameters are estimated by minimizing  

( )( ) ( )( )ˆˆ ˆF
′

= κ κ θ κ κ θ- W - . (32) 

Letting Ξ be the asymptotic covariance matrix of the sample thresholds 
and tetrachoric correlations, two obvious choices of Ŵ  in (32) are -1ˆ ˆ=W Ξ  
(WLS: Muthén, 1978, 1984), and 1ˆ ˆ(Diag( ))−= ΞW  (DWLS: Muthén, du 
Toit & Spisic, 1997). Asymptotically correct parameter estimates and 
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standard errors can be obtained for both estimation methods. Also, the 
restrictions imposed by the model on the thresholds and tetrachoric 
correlations are tested as follows: For WLS estimation ˆNF  is employed 
which is asymptotically distributed as a chi-square distribution. In the case 
of DWLS estimation, a goodness of fit test can be obtained using either 
Satorra and Bentler's (1994) mean correction or their mean and variance 
correction to ˆNF  (see Muthén, 1993). As shown by Muthén (1993), larger 
samples are needed to obtain adequate parameter estimates, standard errors 
and goodness of fit tests with WLS than with DWLS. Thus, DWLS is 
generally to be recommended in practical applications.  

Now, suppose we have performed a multiple judgment paired 
comparisons experiment with n stimuli. We wish to fit the Thurstone-Takane 
Case V model to the observed ñ binary variables as this model assigns non-
zero probabilities to all possible binary patterns (transitive and intransitive). 
To estimate this model with MPLUS we need only specify a factor model 
with n factors where 

 
a) the correlations among these factors are zero, 
b) the factor loadings are fixed constants given by the A matrix,  
c) the factor variances are set equal, 
d) the factor means are set free (except for the last factor mean, 

which is set to zero for identification purposes). 
 
We need not be concerned with the diagonal elements of the matrix U in 

(29) as these elements are not included in the function to be minimized. 
MPLUS in addition can estimate of a set of intercepts in the mean structure. 
These must be set to zero. 

Suppose that alternatively we have performed a ranking experiment with 
n stimuli. We then transform the rankings to ñ binary variables using  (21). 
We wish to fit Thurstone's Case V model to these binary variables as this 
model assigns non-zero probabilities only to transitive binary patterns. To 
estimate this model with MPLUS we need only specify a factor model with 
n factors with the same constraints we used for the Thurstone-Takane model 
except that the factor variances are now set equal to ½ for identification 
purposes. Also, when fitting ranking data the degrees of freedom provided 
by MPLUS are incorrect as MPLUS assumes that there are no redundancies 
among the sample thresholds and tetrachoric correlations. To test the fit of a 
ranking model estimated by WLS one needs to take ˆNF  and manually 
obtain a p-value using the number of degrees of freedom printed in the 
MPLUS output minus r -given in (22). The same procedure can be used 
when the model is estimated using DWLS and a mean scaled goodness of fit 
statistic. It is not possible to correct the  mean and variance adjusted statistic 
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in this way. Therefore, this statistic should not be employed when fitting 
ranking data using MPLUS. 

We now provide two numerical examples to illustrate our presentation. In 
the first example the data are multiple judgment paired comparisons, while 
in the second example the data are rankings. 

 
3.3.4 Modeling preferences for compact cars collected using paired 
comparisons 
 

Maydeu-Olivares (2001) provided data on purchasing preferences for 
these four compact cars: {O = Opel Corsa, R = Renault Clio, S = Seat Ibiza, 
V = Volkswagen Polo}. Because there are six paired comparisons with four 
stimuli, six binary variables were observed for each respondent. These data 
will be re-analyzed here but only for the male respondents. This is because 
we found that preferences for men and women to these stimuli are rather 
different. There were 118 male respondents in the sample. Their responses to 
these four cars are provided in Table 1.  

Table 1.Observed frequencies of paired comparisons patterns in the compact cars data  
 

# pattern fq. # pattern fq. # pattern fq. # pattern fq.
 

*  1 111111 7   17 101111 0 *33 011111 2 *49  001111 2 
*  2 111110 9   18 101110 0 *34 011110 6   50 001110 1 
    3 111101 0   19 101101 0   35 011101 0   51 001101 0 
*  4 111100 6   20 101100 0   36 011100 1   52 001100 0 
*  5 111011 3 *21 101011 3   37 011011 0 *53 001011 1 
    6 111010 0   22 101010 0   38 011010 0   54 001010 1 
*  7 111001 6 *23 101001 4   39 011001 0   55  001001 0 
*  8 111000 7   24  101000 0   40 011000 0   56 001000 0 
    9 110111 0   25  100111 0   41 010111 1 *57 000111 3 
  10 110110 0   26 100110 0 *42 010110 2 *58 000110 1 
  11 110101 0   27 100101 0   43 010101 0   59 000101 0 
*12 110100 17   28 100100 2 *44 010100 3 *60 000100 3 
  13 110011 0   29 100011 1   45 010011 0 *61 000011 1 
  14 110010 0   30 100010 1   46 010010 1   62 000010 1 
  15 110001 0 *31 100001 2   47 010001 0 *63 000001 0 
*16 110000 12 *32 100000 5   48 010000 1 *64 000000 2 

 
Notes: N = 118; * transitive patterns; the binary variables denote the responses to 
these paired comparisons {O,R}, {O,S}, {O,V}, {R,S}, {R,V}, and {S,V}, where 
O = Opel Corsa, R = Renault Clio, S = Seat Ibiza, V =Volkswagen Polo. The binary 
variables take a value of 1 if the first stimuli within a pair was chosen, and 0 
otherwise. 
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As it can be seen in this table 11 respondents (roughly 9% of the sample) 
provided intransitive patterns. Thus, the vast majority of respondents in the 
sample are transitive. Yet, according to Thurstone's model all respondents in 
the population -not just in the sample- must be transitive.  

We fitted a Thurstone-Takane Case V model (29) to these data using 
MPLUS. Since our sample is rather small we used DWLS estimation. 
Goodness of fit was assessed using the mean corrected Satorra-Bentler 
statistic, obtaining 15.87 on 17 degrees of freedom, p = 0.53 so this model 
fits the data rather well. Vµ� was fixed at zero identification purposes. The 
remaining parameter estimates with standard errors in parentheses were  

0µ�  = 0.09 (0.10), Rµ�  = -0.36 (0.11), Sµ� = -0.50 (0.11), 2σ� = 0.46 (0.02). 
MPLUS does not print in the output the diagonal matrix 2(1 2 )= − σU I� . 
This matrix consists of the variances of the pair specific errors which 
account for the intransitivies observed in the data. These variances are 
assumed to be invariant across all paired comparisons. In these data, the pair 
specific variance is 21 2 0.08− σ =� . 

Thus, according to the model the most preferred model in the population 
is the Opel Corsa, followed by the Volkswagen Polo, then by the Renault 
Clio, and the least preferred model is the Seat Ibiza. Also, the between-
subject variability is invariant for all car models, with population variance 
0.46. Furthermore, between-subject variabilities are independent across all 
car models. In other words, individual variability in the preferences for a 
model is independent of the individual variability in the preferences for any 
other model. Finally, the between-subject variability attributed to a car 
model presented next to another (pair specific between-subject variability) is 
invariant across paired comparisons, with population variance 0.08. This 
variability is much smaller than the preferences' variability. This reflects the 
fact that most respondents are transitive.   

In closing this section, we notice that the size of the standard errors for 
the mean preferences relative to the parameter estimates suggest we could 
impose the following equality restrictions on the mean preferences 

0 0, andV R Sµ = µ = µ = µ . A model with these additional restrictions also 
fits the data very well. The mean corrected Satorra-Bentler statistic equals 
18.80 on 19 df, p = 0.47.  Hence, we can not reject the hypothesis that the 
mean preferences for the Opel Corsa and Volkswagen Polo are equal, nor 
that the mean preferences for the Renault Clio and Seat Ibiza are equal. 
These mean similarities may be due to a country-of-origin effect. 
Respondents may have a similar mean preference for the Opel Corsa and the 
Wolkswagen Polo because both car brands are German. Also, respondents 
may have a similar preference for the Renault Clio and Seat Ibiza because 
both car brands are from Southern Europe (France and Spain, respectively). 
Obviously, additional data would be needed to verify this country-of-origin 
hypothesis.  
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3.3.5 Modeling career preferences among Spanish Psychology 
undergraduates using rankings 
 
A pilot study was performed to investigate career preferences among 
sophomore Psychology undergraduates from a Spanish university. 55 students 
were asked to rank these broad Psychology career areas {A = Academic, C = 
Clinical, E = Educational, and I = Industrial} according to their preferences. 
In Table 2 we provide all possible ranking patterns, their corresponding paired 
comparisons patterns and the frequency of each pattern observed in the 
sample. 

 

Table 2. Observed frequencies of ranking patterns and their corresponding paired comparisons 
patterns in the career choices data 
 

A C E I {A,C} {A,E} {A,I} {C,E} {C,I} {E,I} freq. 
1 2 3 4 1 1 1 1 1 1 0 
1 2 4 3 1 1 1 1 1 0 1 
1 3 2 4 1 1 1 0 1 1 0 
1 3 4 2 1 1 1 1 0 0 0 
1 4 2 3 1 1 1 0 0 1 0 
1 4 3 2 1 1 1 0 0 0 0 
2 1 3 4 0 1 1 1 1 1 0 
2 1 4 3 0 1 1 1 1 0 1 
2 3 1 4 1 0 1 0 1 1 0 
2 3 4 1 1 1 0 1 0 0 0 
2 4 1 3 1 0 1 0 0 1 1 
2 4 3 1 1 1 0 0 0 0 0 
3 1 2 4 0 0 1 1 1 1 6 
3 1 4 2 0 1 0 1 1 0 3 
3 2 1 4 0 0 1 0 1 1 6 
3 2 4 1 0 1 0 1 0 0 1 
3 4 1 2 1 0 0 0 0 1 1 
3 4 2 1 1 0 0 0 0 0 1 
4 1 2 3 0 0 0 1 1 1 12 
4 1 3 2 0 0 0 1 1 0 11 
4 2 1 3 0 0 0 0 1 1 0 
4 2 3 1 0 0 0 1 0 0 6 
4 3 1 2 0 0 0 0 0 1 4 
4 3 2 1 0 0 0 0 0 0 1 

 
Notes: N = 55; A = Academic, C = Clinical, E = Educational, I = Industrial; in the 
rankings, the most preferred stimuli is assigned a 1; the binary variables take a value 
of 1 if the first stimuli within a pair ranked over the second stimuli and 0 otherwise. 
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Because we are now modeling rankings we fitted Thurstone's original 
Case V model (27) to the paired comparisons obtained from this ranking. 
Again, because the sample size was rather small we used DWLS estimation. 
The mean adjusted Satorra-Bentler statistic printed in the MPLUS output is 
22.11 on 18 degrees of freedom. However, using (22) we obtain the correct 
number of degrees of freedom: 18 - 4 = 14, p = 0.08. So the model fits the 
data reasonably well. The parameter estimates with standard errors in 
parentheses are Aµ = -0.78 (0.16), Cµ = 0.71 (0.17), Eµ = 0.17 (0.17), where 

iµ = 0 and 2σ = ½ for identification purposes.  
Thus, according to the model the most preferred career area is clinical, 

followed by  educational, followed by industry, and the least preferred career 
area is academic. Also, the between-subject variability is invariant for all 
career areas, and the between-subject variability is independent across all 
careers. In other words, individual variability in the preferences for a career 
area is independent of the individual variability in the preferences for 
another career area.  
  
3.4 Thurstonian Case V modeling of paired comparisons and ranking 
data when background information on the respondents is available 
 

Often times background information on the respondents such as age, 
gender, personality characteristics, etc. is available. When no background 
information was included in the model, we assumed an underlying 
multivariate normal distribution with some threshold and covariance 
structure. We can incorporate respondents' background variables into the 
model by treating them as exogenous variables and by assuming an 
underlying multivariate normal distribution conditional on the background 
variables (Muthén, 1982, 1984). That is, we need not assume that the 
background variables are also multivariate normal. In this way, we can 
model for example the effects of binary variables such as gender on the 
observed preferences. Furthermore, within this conditional approach the 
relationships among the exogenous variables is not modeled. Only the 
effects of the exogenous variables (respondents' background variables) on 
the endogenous variables (paired comparisons or rankings) and the 
relationships among the endogenous variables are modeled.  

In previous sections, we saw how to model the relationships among the 
endogenous variables using Thurstone's Case V model (for ranking data) and 
the Thurstone-Takane Case V model (for paired comparisons data). The 
restrictions imposed by the Thurstone-Takane Case V model on the 
thresholds and tetrachoric correlations among the variables z* are given by 
(29), whereas the restrictions imposed by Thurstone's Case V model are 
given by (27). When p exogenous variables x are present, we also need to 
model the slopes of the regression of x on the ñ-dimensional vector z*. The 
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restrictions imposed by the Thurstone-Takane and Thurstone's Case V 
models on the ñ × p matrix of slopes Π are 

=Π ΑΓ . (33) 

Here, Γ denotes the n × p matrix of slopes of the regression of x on t. 
Not all parameters in Γ can be identified. Because of the comparative nature 
of the data, to identify the model we need to fix the elements of one row of 
Γ. We shall fix at zero the elements of the last row of Γ. This implies that we 
are assuming that the exogenous variables have no effect on the last stimulus 
being compared. The remaining regression slopes must therefore be 
interpreted relative to this assumption. In other words, because of the 
comparative nature of the data, we are unable to determine if an exogenous 
variable has or has not an effect on the preferences for a stimulus. We can 
only determine if the effect of an exogenous variable on a stimulus is larger 
or smaller than the effect for a reference stimulus. 

There is a close correspondence between these Thurstonian models with 
exogenous variables and the structural multivariate probit model with latent 
variables discussed by Muthén (1979). Also, there is a close correspondence 
between these Thurstonian models with exogenous variables and a MIMIC 
model (Jöreskog  & Goldberger, 1975) with binary indicators. Again, the 
key to these correspondences is to view Thurstonian models as factor models 
with non-zero factor means where the matrix of factor loadings consists of 
fixed constants given by A.  

To illustrate the present discussion, we shall now return to the compact 
cars example and model the responses to the same car models {O = Opel 
Corsa, R = Renault Clio, S = Seat Ibiza, V = Volkswagen Polo} along with 
background information on the respondents. The full compact cars data is 
provided in Maydeu-Olivares (1998). Only three background variables are 
included in the data set: gender (coded as male = 0 and female = 1), age 
(ranging from 18 to 21) and monthly family income. Family income is a 
categorical variable with categories 'less than 100,000 Spanish pesetas', 
'between 100,000 and 200,000 pesetas', 'between 200,000 and 300,000 
pesetas' and 'more than 300,000 pesetas'. We coded this variable using the 
values {0.8, 1.5, 2.5, 3.2}. Complete observations were available for 196 
respondents, of which 92 were men, and 104 women.  

To model these paired comparisons data, we fitted the Thurstone-Takane 
Case V model (29) with (33). When exogenous variables are present 
MPLUS estimates first the thresholds, the regression slopes Π and the 
tetrachoric correlations, and collects them in a vector κ. Then the model 
parameters are estimated by minimizing (32). In this final estimation stage 
one may use WLS or DWLS. For our example, we used DWLS. The mean 
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corrected Satorra-Bentler statistic for this model is 49.40 on 26 df, p < 0.01, 
whereas the mean and variance corrected Satorra-Bentler statistic is 24.70 on 
13 df, p = 0.03. Hence the model barely fits these data.  

The parameter estimates obtained and their standard errors are provided 
in Table 3. 

Table 3. Parameter estimates for a Thurstone-Takane Case V model for the compact cars data 
incorporating the respondents' age, gender and family income 
 
Initial model 

                                regression slopes  
Car model 

 
        µ      gender         age family income 

Opel Corsa -1.49 (1.54)     0.18 (0.16)    0.08 (0.07)      0.02 (0.09) 
Renault Clio -4.16 (1.73)     0.39 (0.17)    0.17 (0.09)      0.15 (0.10) 
Seat Ibiza -4.12 (1.60)     0.48 (0.16)    0.18 (0.08)      0.07 (0.10) 
Volkswagen Polo         0*          0*           0*             0* 

 
Final model 

                                regression slopes  
Car model 

 
        µ      gender         age family income 

Opel Corsa         0*          0*           0*            0* 
Renault Clio -3.40a (1.17)     0.35b (0.11)    0.14c (0.06)            0* 
Seat Ibiza -3.40a (1.17)     0.35b (0.11)    0.14c (0.06)            0* 
Volkswagen Polo         0*          0*           0*            0* 

 
Notes: N = 196; standard errors in parentheses; a, b, c denote parameters constrained 
to be equal to other parameters in the model; * parameter fixed for identification 
purposes; 2σ�  = 0.47 (0.02) 
 
 
As shown in this Table, the mean preference for the last car model, 
Volkswagen Polo, as well as the regression slopes of the exogenous 
variables on this car model were fixed at zero to identify the model. 
Therefore, the remaining regression slopes must be interpreted as follows: If 
family income has no effect on the preferences for the Volkswagen Polo, 
then family income has no significant effects on the preferences for any of 
the remaining car models. On the other hand, if age has no effect on the 
preferences for the Volkswagen Polo, there are significant age effects on the 
preferences for the Renault Clio and Seat Ibiza. Older respondents are more 
likely to prefer these two car models. Finally, if there are no gender effects 
on the preferences for the Volkswagen Polo, there are significant gender 
effects on the preferences for the Renault Clio and Seat Ibiza. Women are 
more likely to prefer these two car models.  

Finally, as shown in Table 3, the most preferred car model is now 
Volkswagen Polo followed by Opel Corsa, then by Seat Ibiza, and finally by 
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Renault Clio. The standard errors for these parameters suggest that we could 
constrain the mean preference for the Volkswagen Polo and Opel Corsa to 
be equal, and that we could also constrain the mean preference for the 
Renault Clio and Seat Ibiza to be equal. With these constraints the ordering 
of the preferences for these car models is the same that the one we obtained 
when we model the preferences from male respondents. Actually, only four 
parameters seem to be needed to reproduce these data, as upon inspection of 
their standard errors the slopes of gender on the preferences for the Renault 
Clio and the Seat Ibiza can be set equal, and the slopes of age on the 
preferences for the Renault Clio and the Seat Ibiza can also be set equal.  

A model with these constraints fits the data reasonably well. The Satorra-
Bentler mean scaled statistic yields 49.40 on 26 df, p = 0.06, and the Satorra-
Bentler mean and variance adjusted statistic yields 23.94 on 17 df, p = 0.12. 
The resulting parameter estimates and standard errors are also presented in 
Table 3. This final model can be interpreted as follows: Purchasing 
preferences for the Volkswagen Polo and the Opel Corsa appear to be the 
same, and so do purchasing preferences for the Renault Clio and the Seat 
Ibiza. Respondents prefer the Volkswagen Polo and the Opel Corsa over the 
Renault Clio and the Seat Ibiza. There are no differential effects of family 
income on purchasing preferences for any of these models. However, older 
respondents are more likely to prefer the Renault Clio and the Seat Ibiza, and 
women are more likely than men to prefer the Renault Clio and the Seat 
Ibiza. Furthermore, the between-subject variability in purchasing preferences 
is invariant across all car models, the between-subject variability in paired 
specific preference deviancies is also invariant across all paired 
comparisons, and the deviancies of individual preferences from the mean 
preferences are independent for all car models.  

 
 

3.5 Conclusions 
 

We have reviewed Thurstone's classical Case V model for paired 
comparisons and ranking data. Thurstone's Case V model is not a proper 
model for paired comparisons data when the same individuals respond to all 
paired comparisons as it assigns zero probabilities to all intransitive paired 
comparisons patterns. However, Thurstone's Case V model is a proper model 
for ranking data. To model multiple judgment paired comparisons a vector 
of pair specific errors needs to be added to Thurstone's model, following 
Takane (1987). Although the models appear cumbersome, they can be 
straightforwardly estimated within a structural equations approach using 
software capable of handling binary indicators such as MPLUS. The limited 
information estimation approach employed in MPLUS is a natural extension 
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of the classical estimation procedure for the Case V model. This is discussed 
in the Appendix. 

In this paper, we have only discussed the most widely known variant of 
Thurstone's model -his Case V model. This is also the most restrictive 
variant of Thurstone's model. If this model is found to provide a poor fit to 
their data applied researchers may want to consider less restrictive 
Thurstonian models. For instance: (a) Thurstone's Case III model in which 
the "discriminal processes" are assumed to be independent but with different 
variances, or (b) an unrestricted Thurstonian model in which only minimal 
identification restrictions are imposed on the mean vector and covariance 
matrix of the discriminal processes. Alternatively, applied researchers may 
be interested in Thurstonian model in which a dimensional model such as an 
ideal point or a factor model is assumed to underlie the discriminal 
processes. However, the more complex Thurstonian models impose 
constraints on the thresholds and tetrachoric correlations that can not be 
enforced using standard software for structural equation modeling at the time 
of this writing. Fortunately, any Thurstonian model for paired comparisons 
and ranking data can be fitted using the less well-known structural equations 
modeling package MECOSA (Arminger, Wittenberg & Schepers, 1996).  

In any case, the structural equations modeling framework described here 
is a promising approach to estimate Thurstonian paired comparisons and 
ranking models. Simulation studies (Maydeu-Olivares, 2001, 2003) indicate 
that using this approach adequate parameters estimates, standard errors and 
goodness of fit tests can be obtained for Thurstonian models for 7 stimuli 
with as few as 100 observations. Smaller sample sizes are required to fit 
smaller models.  
 
 
References 

 
Arminger, G., Wittenberg, J. & Schepers, A. (1996). MECOSA 3. User guide. 

Friedrichsdorf: Additive GmbH. 
Bock, R.D. & Jones, L.V. (1968). The measurement and prediction of 

judgment and choice. San Francisco: Holden-Day.  
Böckenholt, U. (1990). Multivariate Thurstonian models. Psychometrika, 55, 

391-403 
Böckenholt, U. (1993). Applications of Thurstonian models to ranking data. In 

M.A. Fligner and J.S. Verducci (Eds).  Probability models and 
statistical analyses for ranking data. New York: Springer-Verlag. 

Böckenholt, U. (2001). Hierarchical modeling of paired comparison data. 
Psychological Methods, 6, 49-66. 



64 Albert Maydeu-Olivares
 
Brady, H.E. (1989). Factor and ideal point analysis for interpersonally 

incomparable data. Psychometrika, 54, 181-202. 
Chan, W. & Bentler, P.M. (1998). Covariance structure analysis of ordinal 

ipsative data. Psychometrika, 63, 360-369. 
David, H.A. (1988). The method of paired comparisons. London: Griffin. 
Jöreskog, K.G. & Goldberger, A.S. (1975). Estimation of a model with 

multiple indicators and multiple causes of a single latent variable. 
Journal of the American Statistical Association, 69, 631-639. 

Luce, R.D. (1959). Individual choice behavior. New York: Wiley. 
Maydeu-Olivares, A. (1998). Structural equation modeling of binary preference 

data. Dissertation Abstracts International: Section B: The Sciences and 
Engineering, 58, 5694.  

Maydeu-Olivares, A. (1999). Thurstonian modeling of ranking data via mean 
and covariance structure analysis. Psychometrika, 64, 325-340. 

Maydeu-Olivares, A. (2001). Limited information estimation and testing of 
Thurstonian models for paired comparison data under multiple 
judgment sampling. Psychometrika, 66, 209-228. 

Maydeu-Olivares, A. (2002). Limited information estimation and testing of 
Thurstonian models for preference data. Mathematical Social Sciences, 
43, 467-483. 

Maydeu-Olivares, A. (2003). On Thurstone's model for paired comparisons and 
ranking data. In Yanai, H., Okada, A., Shigematu, K., Kano, Y., 
Meulman, J.J. (Eds.). New Developments in Psychometrics (pp. 519-
526) Tokyo: Springer. 

Mosteller, F. (1951a). Remarks on the method of paired comparisons: I. The 
least squares solution assuming equal standard deviations and equal 
correlations. Psychometrika, 16, 3-9. 

Mosteller, F. (1951b). Remarks on the method of paired comparisons: III. A 
test of significance for paired comparisons when equal standard 
deviations and equal correlations are assumed. Psychometrika, 16, 207-
218. 

Muthén, B. (1978). Contributions to factor analysis of dichotomous variables. 
Psychometrika, 43,  551-560. 

Muthén, B. (1979). A structural probit model with latent variables. Journal of 
the American Statistical Association, 74, 807-811. 

Muthén, B. (1982). Some categorical response models with continuous latent 
variables. In K.G. Jöreskog & H. Wold (Eds.). Systems under indirect 
observation. (Vol 1) (pp. 65-79). Amsterdam: North Holland. 

Muthén, B. (1984). A general structural equation model with dichotomous, 
ordered categorical, and continuous latent variable indicators. 
Psychometrika, 49, 115-132. 

Muthén, B. (1993). Goodness of fit with categorical and other non normal 
variables. In K.A. Bollen & J.S. Long [Eds.]. Testing structural 
equation models (pp. 205-234). Newbury Park, CA: Sage. 



Thurstone's Case V model: A SEM perspective 65
 
Muthén, B., du Toit, S.H.C. & Spisic, D. (1997). Robust inference using 

weighted least squares and quadratic estimating equations in latent 
variable modeling with categorical and continuous outcomes. Paper 
accepted for publication in Psychometrika. 

Muthén, L. & Muthén, B. (1998). Mplus. Los Angeles, CA: Muthén & Muthén. 
Satorra, A. & Bentler, P.M. (1994). Corrections to test statistics and standard 

errors in covariance structure analysis. In A. von Eye and C.C. Clogg 
(Eds.). Latent variable analysis: Applications to developmental 
research (pp. 399-419). Thousand Oaks, CA: Sage. 

Takane, Y. (1987). Analysis of covariance structures and probabilistic binary 
choice data. Communication and Cognition, 20, 45-62. 

Torgerson, W.S. (1958). Theory and methods of scaling. New York: Wiley. 
Thurstone, L.L. (1927). A law of comparative judgment. Psychological 

Review, 79, 281-299. 
Thurstone, L.L. (1931). Rank order as a psychological method. Journal of 

Experimental Psychology, 14, 187-201. 
Tsai, R.C. & Böckenholt, U. (2001). Maximum likelihood estimation of factor 

and ideal point models for paired comparison data. Journal of 
Mathematical Psychology, 45, 795-811. 

Tsai, R.C. & Yao, G. (2000). Testing Thurstonian Case V ranking models 
using posterior predictive checks. British Journal of Mathematical and 
Statistical Psychology, 53, 275-292. 

Yao, G. & Böckenholt, U. (1999). Bayesian estimation of Thurstonian ranking 
models based on the Gibbs sampler. British Journal of Mathematical 
and Statistical Psychology, 52, 79-92. 

Yu, P.L.H. (2000). Bayesian analysis of order-statistics models for ranking 
data. Psychometrika, 65, 281-299. 

 

 
Appendix 
Relationship between classical and SEM estimation approaches to 
Thurstone's Case V model under multiple judgment sampling 
 
In the notation employed in this paper, Mosteller (1951a) showed that the 
classical estimation solution (see Torgerson, 1958) to Thurstone's Case V 
model is equivalent to minimizing the unweighted least squares function 

ˆ ˆ( ( )) ( ( ))F ′= τ - τ θ τ - τ θ , (34) 

where  
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, ,ˆ ( )i j i jp−1τ = −Φ , (35) 

and pi,j is the sample proportion corresponding to (2).  
 Now, the proportions pi,j are the sample means of the binary variables 

yi,j and ,ˆ i jτ  is the maximum likelihood estimate of ,i jτ when estimated from 
yi,j. Thus, the classical estimation approach consists of a two stage procedure 
that only makes use of univariate information. In the first stage each 
threshold is estimated one variable at a time using (35) and in the second 
stage the model parameters are estimated by unweighted least squares from 
the first stage estimates.  

In contrast, within a structural equations approach a three stage procedure 
using univariate and bivariate information is used (Muthén, 1978, 1984). In 
the first stage, each threshold is estimated separately one variable at a time 
using maximum likelihood. In the second stage, each tetrachoric correlation 
is estimated separately from two variables at a time inputting the first stage 
estimates. Finally, in the third stage the model parameters are estimated from 
the first and second stage estimates using either an unweighted, a diagonally 
weighted or a full weighted least squares approach. Therefore, the structural 
equations approach is a natural extension to the classical procedure in which 
not only univariate information from the data is employed, but also bivariate 
information.  

Standard errors and goodness of fit tests are computed within a structural 
equations framework taking into account the dependencies among the 
univariate and bivariate proportions. In contrast, in the classical estimation 
approach, the univariate proportions pi,j are assumed to be independent. This 
assumption is violated in the case of multiple judgment paired comparisons 
and ranking data –see (15). Therefore, standard errors and goodness of fit 
tests for these data obtained using the classical approach are incorrect. For 
instance, Mosteller's (1951b) goodness of fit test is overly optimistic when 
applied to multiple judgment paired comparisons and ranking data. 

Furthermore, many Thurstonian models are not identified from univariate 
information alone. Yet, any Thurstonian model can be are identified as soon 
as bivariate information is used. For instance, the Thurstone-Takane Case V 
model is not identified  from univariate information alone. Therefore, it can 
not be estimated using the classical estimation approach for Thurstonian 
models. 

 

 

 


